This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

5'-Hydrogenphosphonates and 5'-Methylphosphonates of Sugar Modified Pyrimidine Nucleosides as Potential Anti-HIV-1 Agents.¹

Alexander A. Krayevsky^a; Natalie B. Tarussova^a; Qing-Yu Zhu^b; Pedro Vidal^b; Ting-Chao Chou^b; Penny Baron^b; Bruce Polsky^b; Xiang-Jun Jiang^b; Jasenka Matulič-Adamič^b; Ivan Rosenberg^b; Kyoichi A. Watanabe^b

 $^{\rm a}$ Memorial Sloan-Kettering Cancer Center, New York, NY $^{\rm b}$ Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow, USSR

To cite this Article Krayevsky, Alexander A. , Tarussova, Natalie B. , Zhu, Qing-Yu , Vidal, Pedro , Chou, Ting-Chao , Baron, Penny , Polsky, Bruce , Jiang, Xiang-Jun , Matulič-Adamič, Jasenka , Rosenberg, Ivan and Watanabe, Kyoichi A.(1992) '5'-Hydrogenphosphonates and 5'-Methylphosphonates of Sugar Modified Pyrimidine Nucleosides as Potential Anti-HIV-1 Agents. $^{\rm l}$ ', Nucleosides, Nucleotides and Nucleic Acids, 11: 2, 177 - 196

To link to this Article: DOI: 10.1080/07328319208021696
URL: http://dx.doi.org/10.1080/07328319208021696

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

5'-HYDROGENPHOSPHONATES AND 5'-METHYLPHOSPHONATES OF SUGAR MODIFIED PYRIMIDINE NUCLEOSIDES AS POTENTIAL ANTI-HIV-1 AGENTS.1

Alexander A. Krayevsky, † Natalie B. Tarussova, † Qing-Yu Zhu, ‡
Pedro Vidal, ‡ Ting-Chao Chou, ‡ Penny Baron, ‡
Bruce Polsky, ‡ Xiang-Jun Jiang, ‡ Jasenka Matulič-Adamič, ‡
Ivan Rosenberg, ‡ and Kyoichi A. Watanabe‡ *

†Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow, USSR, †Memorial Sloan-Kettering Cancer Center, New York, NY 10021

Abstract. A number of nucleoside 5'-hydrogenphosphonates and nucleoside 5'-methylphosphonates were prepared, to study their ability to inhibit replication of HIV-1. Two compounds, the 5'-hydrogenphosphonate of 3'-azido-3'-deoxythymidine (AZT-HP, IVc) and of 3'-deoxy-3'-fluorothymidine (FIT-HP, IVa), exhibit potent anti-HIV-1 activity with selectivity indices similar to or better than those of their parent nucleosides.

Introduction.

The only clinical agent approved in the United States for the treatment of AIDS is 3'-azido-3'-deoxy-thymidine (AZT). 2,3 Several 2',3'-dideoxy-4,5 and 2',3'-didehydro-2',3'-dideoxy-6,7 as well as some other types of nucleosides 11 are also reported to be active against human immuno-deficiency virus (HIV), the pathogen responsible for causing AIDS. The molecular mechanism(s) of action of these nucleosides includes conversion into their corresponding 5'-monophosphates by the action of cellular nucleoside kinase(s), followed by stepwise phosphorylation catalyzed by cellular nucleotide kinases to the corresponding 5'-triphosphates. These inhibit proviral DNA synthesis, 3,12,13 catalyzed by HIV reverse transcriptase (RT), by incorporation to the 3' end of the growing DNA chain. 3,7

This paper is dedicated to the memory of Professor Tohru Ueda.

Many nucleosides are poor substrates for deoxynucleoside kinase(s), due to rather restricted structural requirements of the enzyme(s). Nucleosides that are very poor substrates for cellular kinases exhibit little or no activity against HIV infected cells. 12,13 However, nucleoside 5'-triphosphates in general, which are usually formed readily from their corresponding 5'-monophosphates in the cell, inhibit purified RT in cell free systems. 14,15 For example, 2',3'-dideoxycytidine (ddC) is phosphorylated by deoxycytidine kinase16,17 to its 5'-monophosphate (ddCMP) which is further converted into the triphosphate (ddCTP) and inhibits RT.^{3,18} In this case the rate determining step is apparently the ddCMP formation. 19 On the other hand, AZT3 and FLLT20 are converted by cytosolic thymidine kinase to their 5'-monophosphate (AZT-MP and FIIT-MP) which are further converted stepwise into the di- and triphosphate (AZT-DP, -TP, and FIIT-DP, -TP, respectively) presumably by the host cell thymidylate kinase. AZT-TP competes about 100-fold better for the HIV RT than for the cellular DNA polymerase α . The intracellular levels of AZT-MP and FIIT-MP are high compared with the levels of their corresponding nucleoside-DP and -TP's.3,20 AZT-MP inhibits thymidylate kinase reducing the intracellular level of dTTP needed for DNA synthesis.3 More recently, AZT was reported to be reduced to 3'-amino-3'-deoxythymidine21 which is highly toxic to bone marrow cells.22

The catabolic pattern of nucleoside phosphonates may be different from that of the parent nucleosides. Also, nucleoside-5'-O-hydrogen-phosphonates (H-phosphonates), unlike strongly acidic nucleoside 5'-phosphates (which cannot enter the cell²³), may penetrate the cell membrane due to their weakly acidic nature, and may be converted into the triphosphate analogues, pyrophosphorylhydrogenphosphonates, which then inhibit viral DNA synthesis catalyzed by the RT, or oxidized to their corresponding phosphates and then further converted into the corresponding triphosphates in the cell. However, unlike AZT-MP, these phosphonates may not inhibit the dTTP formation until they are oxidized. Therefore, the toxicity of the anti-HTV nucleosides may be reduced by formation of their corresponding 5'-phosphonates.

Recently, Holý <u>et al</u>. reported²⁴ that (S)-9-([3-hydroxy-2-phosphonyl-methoxy]propyl)adenine [(S)-HFMPA, Figure 1] was active against several DNA and RNA viruses, including HIV, in cell systems. The H-phosphonate of $9-(\beta-D-arabinofuranosyl)$ adenine, ara-A-5'-O-[H-phosphonate], was also

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Ha

Пb

Hc

IId

He

llf llq

Hh

$$\begin{array}{c|c}
X & R^{1} & R^{5} \\
\hline
X & R^{1} & R^{5} \\
\hline
X & R^{1} & R^{5}
\end{array}$$

	R ¹	R ³	R ⁵
IVa	H	F	Me
IVb	Me	F	Me
(Vc	H	Nz	Me
IVd	Me	N ₃	Me
IVe	Н	N ₃	Н
IV f	Me	N ₃	Н

Me

	_R ′	RJ
Va	Н	Н
Vb	Me	Н
Vc	Н	N3
Vd	Me	Nz

Figure 1

reported to be active against several DNA viruses in cells.²⁵ The H-phosphonate, methyl phosphonate, and methylenediphosphonate of AZT were synthesized and found to inhibit replication of HIV in cells.^{26,27}

We synthesized H-phosphonates and methylphosphonates of a number of carbohydrate-modified pyrimidine nucleosides, to test their ability to inhibit replication of HIV. These nucleoside phosphonates can be divided into five categories (Figure 1): 2',3'-dideoxynucleosides I, 2',3'-dideoxynucleosides II, 2',3'-anhydrolyxofuranosylnucleosides III, 2',3'-dideoxy-3'-substituted-nucleosides IV, and $2'-\beta$ -fluorinated nucleosides V.

These nucleoside 5'-phosphonates were prepared by using a modified method of Chen and Benkovic, 28 isolated as their ammonium salts, and used directly in the anti-HIV-1 assay in the H9 cell system. In this way, we were able to prepare a large number of derivatives in a relatively short period of time for initial screening. All the compounds that showed activity were prepared in larger amounts by the modified method of Takaku et al., 29 and were isolated as their sodium salts. The purity of the sodium salts was from 99.6 to 99.9% by HPIC analyses. These compounds were rescreened in the H9 and MT4 cell systems. IC $_{50}$ and EC $_{50}$ values (the concentrations required to inhibit cell growth by 50% and to inhibit HIV replication by 50%, respectively) were determined on compounds that were repurified by HPIC, and showed that they contain less than 0.01% of the parent nucleosides.

These nucleosides with 10-fold serial dilution were screened preliminally by indirect immunofluorescence assay (IFA) against the HTLV-III $_{\rm B}$ strain of HIV-I, using H9 cells as the target and 10 3 tissue culture infectious doses $_{50}$ (TCID $_{50}$) of virus. HIV antigens were detected. The IC $_{50}$ values (for cytotoxicity) of compounds that exhibited activity in the screening were determined. The detailed dose-effect relationships and EC $_{50}$ values (for efficacy) of those compounds were then measured in MT4 cells, using the antigen ELISA kit, 4 and inhibition of the RT release. 5,30

Experimental Section

 1 H NMR spectra were recorded on a JEOL PFT-100 or JEOL FX90 spectrometer with Me $_4$ Si as the internal standard. TLC was performed on Uniplates (Analtech Co., Newark, DE) and preparative LC on Uniplates 20 x 20 cm, using isopropanol: 25% ammonium hydroxide: water (7:1:2 v/v). Mass

spectral data were recorded by Dr. B. T. Chait of the Mass Spectrometric Biotechnology Resource, Rockefeller University.

1-(3-Azido-3-decxy-5-0-[hydrogenphosphonyl]-β-D-<u>erythro</u>-pentofuranosyl)thymine Ammonium Salt (IVc). To a solution of 3'-azido-3'-deoxythymidine (53 mg, 0.2 mmol) in pyridine (2 mL) were added 0.6 M solution of phosphorous acid mono-n-butylammonium salt in pyridine (0.5 mL) and N,N'-dicyclohexylcarbodiimide (125 mg, 0.6 mmol). The stirred for 4 h at room temperature and was then centrifuged for 10 min. The supernatant was removed by decantation, and the solid twice washed by dispersion in H₂O (1 mL each) followed by centrifugation. The combined supernatants were concentrated to dryness in vacuo. The residue was dissolved in a minimal amount of pyridine and applied to a silica gel plate (20 x 20 x 0.15 cm), and the plate was developed in solvent 1 (see The UV absorbing band corresponding to the nucleoside-5'phosphonate was scraped and then extracted with solvent 1 (30 mL). solvent was removed by evaporation in vacuo. The residue was reevaporated with water (2 mL), and then dried azeotropically by evaporation with EtOH (2 mL x 2) in vacuo to give IVc (58 mg, 84% yield) as a colorless foam.

By following the same procedure but using the corresponding nucleosides instead of 3'-azido-3'-deoxythymidine, the following nucleoside-5'-hydrogenphosphonate ammonium salts were prepared:

1-(2,3-Dideoxy-5-O-[hydrogenphosphonyl]- β -D-glycero-pentofuranosyl)-cytosine (Ia), -thymine (Ic), -uracil (Ie); 1-(2,3-dideoxy-2,3-didehydro-5-O-[hydrogenphosphonyl]- β -D-glycero-pentofuranosyl)cytosine (IIa), -thymine (IIc), -uracil (IIe), 1-(2,3-dideoxy-2,3-didehydro-2-fluoro-5-O-[hydrogenphosphonyl]- β -D-glycero-pentofuranosyl)thymine (IIg); 1-(2,3-anhydro-5-O-[hydrogenphosphonyl]- β -D-lyxofuranosyl)cytosine (IIIa), -5-fluorouracil (IIIc), -uracil (IIIe), 1-(2,3-dideoxy-3-fluoro-5-O-[hydrogenphosphonyl]- β -D-erythro-pentofuranosyl)thymine (IVa), 1-(3-azido-2,3-dideoxy-5-O-[hydrogenphosphonyl]- β -D-erythro-pentofuranosyl)thymine (IVc), -uracil (IVe); 1-(2,3-dideoxy-2-fluoro-5-O-[hydrogenphosphonyl]- β -D-threo-pentofuranosyl)thymine (Va), 1-(3-azido-2,3-dideoxy-2-fluoro-5-O-[hydrogenphosphonyl]- β -D-arabinofuranosyl)thymine (Vc).

Table 1 lists the reaction conditions, yields, and chromatographic and UV characteristics of some of these nucleoside-5'-hydrogenphosphonates.

Table 1 Experimental conditions for the synthesis of 5'-H-phosphonates

		*****		- character		177	abaax	mtion
Compou	solvent nd (mL)	time (hrs)	yield (%)	chromato solvent 1 Rf	solvent Rf		absor n H ₂ O min	
Ia Ic	pyridine (2) MeCN (2)*1	12 38	47 61	0.76 0.70	0.74 0.66	261 268	230 234	7.0 7.0
Ie	MeCN (2)*2	8 ^{*3}	36	0.54	0.48	270 277	247 237	7.0 1.0
IIa	(MeO) ₃ PO (2)	4*3	36	0.73	0.73	270 277	247 238	7.0 1.0
IIc IIe	(MeO) ₃ PO (2) MeCN/(MeO) ₃ PO (1)/(0.5)	8 ^{*3} 4	4 0 5 2	0.63 0.54	0.60 0.53	266 261	234 230	7.0 7.0
IIIa	(MeO) ₃ PO (1)	14	46	0.37	0.34	270 277	247 238	7.0 1.0
IIIc IIIe	(MeO) ₃ PO (0.5) (MeO) ₃ PO (0.5)		58 52	0.45 0.43	0.45 0.54	268 261	234 230	7.0 7.0
IVa IVc	pyridine (2) pyridine (2)	6 12	78 84	0.62 0.68	0.56 0.55	266 266	234 234	7.0 7.0
Va Vc	pyridine (2) pyridine (2)	4 8	84 76	0.88 0.80	0.80 0.80	266 266	234 234	7.0 7.0

Solvent 1: iPrOH : 25% NH₄OH : H₂O (7:1:2 V/V)

Solvent 2: dioxane : iPrOH : 25% NH,OH : H,O (6:5:1:4 V/V)

Table 3 lists the ¹H NMR parameters for some of these nucleoside-5'-hydrogenphosphonates.

Table 5 lists the ^{31}P NMR data for some representative nucleoside-5'-phosphonates.

Table 6 lists mass spectral data of mucleoside 5'-hydrogenphosphonates.

1-(2,3-Dideoxy-5-O-[methylphosphonyl]- β -D-glycero-pento-furanosyl) cytosine Ammonium Salt (Ib). To a solution of 1-(2,3-dideoxy- β -D-glycero-pento-furanosyl) cytosine (43 mg, 0.2 mmol) in (MeO)₃PO (2.0 mL) were added at 0

^{*1} with 0.4 mL of N-methylimidazole

[&]quot;2 with 0.5 mL of (MeO)3PO

beyond this time, side reactions take place

Table 2. Experimental conditions for the synthesis of 5'-Me-phosphonates

	(MeO)	₃ PO:MeC	N time	e time	yield	chroma	tography	UV al	osorp	tion
Compound	(mL)	(mL)	(hr)	(hr)	(%)	solven	t solvent	ir	H ₂ O	(mm)
			at 0°	C at rt	·	(1)	(2)	max	min	Hq
Ιb	1.5	0	18	0	47	0.56	0.52	270	247	7.0
								27	7 238	1.0
Iđ	2	0	1	4	86	0.53	0.50	266	234	7.0
If	0.5	2	14	4	54	0.73	0.70	261	232	7.0
IIb	2	0	1	4	42	0.71	0.68	270	247	7.0
								27	7 238	1.0
IIđ	1.5	0	1	4	85	0.70	0.68	266	234	7.0
IIf	0.5	0	14	0	67	0.50	0.46	261	232	7.0
IIIb	1.5	0	6	12	52	0.42	0.40	270	247	7.0
								27	7 238	1.0
IIId	0.5	0	21	18	46	0.87	0.80	269	234	7.0
IVb	0.2	2	14	6	64	0.73	0.70	261	232	7.0
IVd	0.3	1	6	2	78	0.85	0.75	266	234	7.0
٧b	0.3	1	6	8	57	0.65	0.54	265	234	7.0
Vđ	0.3	2	14	0	58	0.87	0.75	265	235	7.0

Solvent 1: iPrOH : 25% NH₄OH : H₅O (7:1:2 v/v)

Solvent 2: dioxane : $iPrOH : 25% NH_4OH : H_4O (6:5:1:4 v/v)$

 $^{\circ}$ C, successively, dichloromethylphosphoryl oxide (80 mg, 0.6 mmol) and 1,2,4-tetrazole (20 mg). The mixture was stirred at 0 $^{\circ}$ C for 1 h and then at room temperature for 4 h. The mixture was cooled to 0 $^{\circ}$ C, and the reaction quenched by addition of Et₃N (0.2 mL) and H₂O (0.2 mL). The mixture was stirred for 2 h at 4 $^{\circ}$ C and then concentrated in vacuo. Compound Ib (29 mg, 42% yield, as a colorless foam) was isolated by preparative TIC on a silica gel plate (solvent 1).

By following the same procedure but using the corresponding nucleosides instead of 1-(2,3-dideoxy- β -D-glycero-pentofuranosyl) cytosine, the following nucleoside-5'-methylphosphonate ammonium salts were prepared:

Table 3. ¹H NMR parameters for 5'-hydrogenphosphonates in D,0.*1

Compoun	d H1'	H2 '	нз'	H4 '	H5',5"	H - 5	H-6	5Me	H-P
Va.	6.11dt (6.1, 0.4	5.6-5	. Om	4.50m	4.05m	7			6.79d (637.7)
Vc	6.18t (6.2)	5.340		4.58m	4.14m			1.87d	•
IVa	6.21t (4.7)	4.56m	5.63t (8.2)	5.06t (8.2)	4.15t (4.9)				l 6.80d (639.7)
IVc	6.21t (6.6)	2.46t (6.2)	4.63t (5.45)	3.88s	4.20m				7.11d (637.5)
Ia	6.4m	2.15m (10.7	3.52dd ,10.7)	4.20m	3.99m		8.04d (7.7)		6.71d (629.8)
Ic	6.40t (6.6)	2.3-2	.lm	4.42m	4.06m				l` 6.80d (636.3)
Ie	6.08dd (6.8,6.0)	2.17m	3.36m	4.60m	4.02m				6.73d (637.5)
IIa	6.95t (5.0)	4.98m 6	-4.5m 4.	.1-4m 3	.7-3.6m	6.45d (7.3)			6.48d (638.3)
IIc	6.1-6.0m	4.5-4.3		4.4-4.		-	`7.98s		6.74d (637.7)
IIIa	6.20s	4.2			2.9m		7.85d (7.7)		7.14d (641.1)
IIIc	6.20s	5.9		-4.0m	4.3-4.2m		7.86d (8.2)		6.75d (645.3)
IIIe	6.25m	4.5			-4.8m		8.03d (6.6)		6.78d (641.1)

Chemical shifts in ppm (δ) . Signal description by apparent shape (e.g., t or q). Coupling constants in Hz in parentheses right below chemical shifts first order. For HP(0) (OH)₂, δ 6.88d (672.0 Hz).

1-(2,3-Dideoxy-5-O-[methylphosphonyl]- β -D-glycero-pentofuranosyl)-thymine (Id), -uracil (If); 1-(2,3-dideoxy-2,3-didehydro-5-O-[methylphosphonyl]- β -D-glycero-pentofuranosyl)cytosine (IIb), -thymine (IId), -uracil (IIf); 1-(2,3-dideoxy-2,3-didehydro-3-fluoro-5-O-[methylphosphonyl]- β -D-glycero-pentofuranosyl)thymine (IIh); 1-(2,3-anhydro-5-O-[methylphosphonyl]- β -D-lyxofuranosyl)cytosine (IIIb), -5-fluorouracil (IIId); 1-(2,3-dideoxy-3-fluoro-5-O-[methylphosphonyl]- β -D-erythro-

Table 4. 'H NMR parameters for 5'-methylphosph	ionates	ın DO'
--	---------	--------

Compou	nd H1'	H2 •	Н3 '	H4 '	H5',5"	Н5	H - 6	5Me	Me-P
Ιb	6.05m	1.78m	3.58d	4.12m	4.02m		8.58d		1.31d
			(10.7)				(7.7)		(16.5)
Id	6.25m	2.03m	3.12m	5.02m	4.0-3.8n	ı	8.13s	1.41d	1.29d
								(1.1)	(16.5)
Ιf	6.11t	2.13m	3.12m	5.02m	4.1-3.5n	1 5.86d	7.91d		1.27d
	(11.2)					(8.2)	(8.2)		(14.5)
T175	c 40+	4 52-	E 704	E 16m	2726	_	7 750	1 02-	1 224
IVb	6.40t (8.8)	4.53m	5.72d	3.10III	3.7-2.6r	ı	7.75s	1.93s	1.33d
īvā		2.80t	(4.1) 4.48m	2 004	4.4-4.3r		7 004	2.21d	(16.2) 1.22d
144	(6.6)	(6.3)	4.40111	(5.4)	4.4.4.31		(1.1)		(16.1)
	(0.0)	(0.5)		(3.4)			(1.1)	(0.5)	(10.1)
٧b	6.12t						7.68d	1.89d	1.36d
	(6.1)							(1.2)	
Vđ	6.52t	5.72t	4.78m	3.54t	4.5-4.4r	n		2.23d	
	(4.6)	(8.4)		(7.4)			(1.2)	(1.2)	(16.4)
IIb	6.93m	5.05d	5.98m	3.96m	3.88		17.79d		1.16d
		(5.0)			(10.4)	(8.5)			
IId	6.94m	4.53m	4.94t	3.98m	3.61m		6.59d		d 1.16d
			(10.4)				(1.0)		(16.4)
ΙΙf	6.81m	5.83m	6.50m	4.78m			7.30d		1.22d
					(5.5)	(8.0)	(8.0)		(16.5)
IIIb	6.19s	4.6-			3.5m	6 153	l 8.75d		1.29d
1110	0.195	4.0			J		(8.5)		(16.5)
IIId	6.25t	4.3-			3.2m	(0.0)	8.09d		1.36d
	0.200				J • 2.111		(6.6)		(16.5)

Chemical shifts in ppm (δ) . Signal description by apparent shape (e.g., t or q). Coupling constants in Hz in parentheses right below chemical shifts first order.

pentofuranosyl)thymine (**IVb**), 1-(3-azido-2,3-dideoxy-5-O-[methyl-phosphonyl]- β -D-<u>erythro</u>-pentofuranosyl)thymine (**IVd**); -uracil (**IVf**); 1-(2,3-di-deoxy-2-fluoro-5-O-[methylphosphonyl]- β -D-<u>threo</u>-pentofuranosyl)thymine (**Vb**); 1-(3-azido-2,3-dideoxy-2-fluoro-5-O-[methylphosphonyl]- β -D-arabinofuranosyl)thymine (**Vd**).

Table 2 lists the reaction conditions, yields, and chromatographic and UV characteristics of some of these nucleoside—5'—methylphosphonates that are synthesized by the above procedure.

Table 3 lists the ¹H NMR parameters of these nucleoside-5'-hydrogen-phosphonates.

Table 5. ³¹ P NMR parameters	for 5'-phosphonates	s in D.O.
		Coupling constants
Compounds	ppm	(Hz)
-	(δ)	
Ia	5.65m	929.9
Ιb	19.18m	541.4,
Ic	6.16d	637.0
If	24.46m	551.7
IIIa	6.16m	634.3
IVb	26.72m	636.6

IVd

Table 4 lists the ¹H NMR parameters for these nucleoside-5'-methyl-phosphonates.

6.29d

637.2

Table 5 lists the ³¹P NMR data for some representative nucleoside-5'-phosphonates.

Table 6 lists mass spectral data of mucleoside 5'-hydrogenphosphonates.

 $1-(3-Deoxy-3-fluoro-5-O-[hydrogenphosphonyl]-\beta-D-erythro-pentofuranosyl)$ thymine Sodium Salt (IVa). To a solution of 3'-deoxy-3'-fluorothymidine (122 mg, 0.50 mmol) in pyridine (5 mL) was added Et,N (7 μ L), and the mixture was cooled in an ice-bath. Tris-(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite (0.40 g, 0.75 mmol) was added, and the mixture was stirred at room temperature overnight under N₂. The reaction was quenched by addition of 2 M Et_NH,CO3 (pH 7.5, 2 mL). After stirring for 30 min, the mixture was concentrated in vacuo (bath temperature 40 °C). The residue, after several coevaporations with MeOH, was dissolved in H₂O (10 mL), and the solution was placed on top of a column of DEAE-Sephadex A25 (HCO₃ form) (16 x 250 mm). The column was washed with H₂O, and then the product was eluted using a linear gradient formed from 1.0 L each of H,O and 0.30 M Et,NH,CO3. The UV absorbing fractions were combined, concentrated in vacuo, and the excess buffer was removed by codistillation with MeOH. The residual syrup was dissolved in H,O, and the solution passed through a column of AG 50W x 8 (Na⁺) to yield, after evaporation, the Na salt of IVa (148 mg, 90%).

By following the same procedure but using the corresponding nucleosides instead of 3'-deoxy-3'-fluoro-thymidine, the following nucleoside-5'-hydrogenphosphonate sodium salts were prepared:

Mass spectral data of 5'-hydrogenphosphonates and
5'-methylphosphonates of pyrimidine nucleosides.

'ompound ^a	Formula ^b	m/z ^c
_	(mol. wt.)	(+) FAB (-) FAB
ldC-HP Ia	C ₉ H ₄ N ₃ O ₅ P (275.20)	276 274
kat-HP Ic	$C_{10}H_{15}N_2O_6P$ (290.22)	291 289
kdu-HP Ie	$C_9 H_{13} N_2 O_8 P$ (276.19)	277 275
14C-HP IIa	$C_{9}H_{12}N_{3}O_{5}P$ (273.19)	274 272
14T-HP IIC	$C_{10}H_{13}N_2O_6P$ (288.20)	289 287
-d4T-HP IIg	C ₁₀ H ₁₂ FN ₂ O ₆ P(306.19)	307 305
aC-HP IIIa	$C_{9}H_{12}N_{3}O_{6}P$ (289.19)	290 288
laFU-HP IIIc	C ₉ H ₁₀ FN ₂ O ₇ P (308.16)	309 307
LaU-HP IIIe	$C_0H_{11}N_2O_7P$ (290.17)	291 289
ZT-HP IVc	$C_{10}H_{14}N_5O_6P$ (331.23)	332 330
TIT-HP IVa	$C_{10}H_{14}FN_{2}O_{8}P(308.21)$	309 307
ZU-HP IVe	$C_9H_{12}N_5O_6P$ (317.20)	318 316
dC-MeP Ib	$C_{10}H_{16}N_3O_5P$ (289.23)	290 288
RdT-MeP Iđ	$C_{11}H_{17}N_2O_6P$ (304.24)	305 303
du-Mep if	$C_{10}H_{15}N_{2}O_{6}P$ (290.22)	291 289
14C-MeP IIb	$C_{10}H_{14}N_{3}O_{5}P$ (287.21)	288 286
F-d4T-MeP IIh	C ₁₁ H ₁₄ FN ₂ O ₆ P(320.22)	321 319
laFU-MeP IIId	$C_{10}H_{12}FN_2O_7P(322.19)$	323 321
laC-MeP IIIb	$C_{10}H_{14}N_3O_8P$ (303.21)	304 302
LIT-MeP IVb	$C_{11}H_{16}FN_2O_6P(322.23)$	323 321
ZT-MeP IVd	$C_{11}H_{16}N_{5}O_{6}P$ (345.25)	346 344
AZU-MeP IVf	$C_{10}H_{14}N_5O_6P$ (331.23)	332 330
F-AZT-MeP Vd	$C_{11}H_{15}FN_5O_6P(363.24)$	364 362

^a Phosphonates that showed activity in preliminary screening.

1-(2,3-Dideoxy-5-O-hydrogenphosphonyl- β -D-glycero-pentofuranosyl)-cytosine (Ia), -thymine (Ic), -uracil (Ie); 1-(2,3-dideoxy-2,3-didehydro-5-O-hydrogenphosphonyl- β -D-glycero-pento-furanosyl)cytosine (IIa), -thymine (IIb), -uracil (IIe), 1-(2,3-anhydro-5-O-hydrogenphosphonyl- β -D-lyxofuranosyl)-cytosine (IIIa), -5-fluorouracil (IIIc), -uracil (IIIe), 1-(3-azido-2,3-dideoxy-5-O-[hydrogenphosphonyl]- β -D-erythro-pentofuranosyl)thymine (IVc).

1-(2,3-Didehydro-2,3-dideoxy-2-fluoro-5-O-[methylphosphonyl]- β -D-glycero-pentofuranosyl)thymine Sodium Salt (IIg). To an ice-cold solution of

b As free acids.

[°] Ammonium salts. Major peak: $Xe(+)FAB (M - NH_3 + H^{\dagger})$, $Xe(-)FAB (M - NH_3 - H^{\dagger})$.

methylphosphonyl dichloride (359 mg, 2.7 mmol) in anhydrous pyridine (2.7 mL) was added dropwise a 1 M solution of H,O in pyridine (2.7 mL). suspension was stirred at room temperature for 15 min and then The clear supernatant (2.7 mL, 3 equiv) was added to predried 2'-deoxy-2',3'-didehydro-2'-fluorothymidinene (108 mg, 0.45 mmol), and the homogeneous solution was kept at room temperature for 20 h. The reaction was quenched by addition of 2M Et,NH2CO3 (4 mL), and the mixture was concentrated to dryness in vacuo. After several coevaporations with MeOH, the residue was dissolved in H₂O (10 mL) and chromatographed on a DEAE-Sephadex A-25 column (16 x 250 mm) using, at first, H,O as the eluent and then a linear gradient from H,O and 0.3M Et,NH,CO, (1 L each). Fractions containing the desired product were combined, and concentrated in vacuo. The residue was dissolved in H₂O, and the solution passed through a column of AG 50W x 8 (Na⁺ form). absorbing fractions were collected, concentrated, and the residue triturated with EtOH to obtain crystalline IIq. An additional amount of IIg was obtained from the mother liquor by concentration, reprecipitation with MeOH-Et,O, and centrifugation. The combined solid product was dried in vacuo over P_2O_5 to afford IIg (104 mg, 73 %).

Purification of Nucleoside 5'-phosphonates by HPIC. Analytical and semipreparative HPIC were performed on an HPIC system (Rainin) in a gradient system on Dynamax-300A 5 μ m reverse phase column (10 x 250 mm) or Dynamax Macro HPIC C18 column (16 x 300 mm) (both from Rainin), using the 0.1M TEAB-H₂O-MeCN system as the mobile phase (flow rate 2 mL/min). Retention time for a phosphonate is always shorter than for the parent nucleoside (e.g., FIT-HP 5.8 min, FIT 7.9 min). Fractions containing the desired product were collected, concentrated in vacuo, and the residue, after several co-evaporations with MeOH, was dried in vacuo over P₂O₅. The solid residue was dissolved in H₂O, the solution was filtered through a Millipore filter (0.2 μ m), and the concentration of the compound was determined spectrophotometrically. This solution was directly used for anti-HIV-1 assay. The nucleoside phosphonates were stable in solution at room temperature for at least 3 weeks as measured by HPIC.

Anti-HTV-I Assay. Preliminary Screening using H9 Cells. Experiments were performed in 24-well tissue culture plates, using 5 x 10⁵ cells in a total

volume of 1 mL. The cells were pre-incubated with 10 serial dilutions of nucleoside for 60 min before incubation with 10³ TCID₅₀ of virus. The cultures were refed every 3 to 4 days with fresh medium containing the appropriate concentrations of each drug. On day 8, cells were harvested and HIV antigens were detected by immunofluorescence assay (IFA), ³⁰ using human serum containing high titers of anti-HIV antibodies. Cells were assessed for drug toxicity by trypan blue dye exclusion. Results are expressed as percent inhibition of infection in cultures containing experimental drugs, compared with control (untreated) cultures. Zidovudine was routinely used as a positive control for inhibition.

Anti-HIV-I Assay using MT4 Cells. MT4 cells were infected with HIV-1 at 200 TCID₅₀ viruses per 10⁶ cells. After an adsorption period of 1 h at 37 °C, 5% CO₂, unabsorbed virus was removed by washing once with fresh medium. The cells were then suspended in fresh medium to make a cell suspension of 10⁶ cells/3mL. The cell suspension was distributed into 12-well plates (3 mL/well), and various concentrations of the test compounds were added immediately. After 5 days of incubation at 37 °C, 5% CO₂, HIV-1 P24 core antigens in the supernatants of the cell cultures were determined. Untreated and uninfected cell control, and untreated but infected cell control were included in each experiment. Cell-free supernatant fluids of the cell cultures were assayed by HIV-1 P24 core antigen ELISA³⁰ (Du Pont-NEN Research Products, Boston, MA), directly employing the procedure described in the ELISA kit. AZT was routinely used as a positive control for inhibition.

Reverse Transcriptase (RT) Assay. The presence of HIV-1 RT in the supernatants of infected, drug-treated and infected, and non drug-treated MT4 cell cultures was assayed by a modification of the method of Spira et al. 31 as described by Hartshorn et al. 30 Cell culture fluids were clarified at 1000 rpm for 10 min to remove cellular debris. The supernatant samples (20 μ L) were transferred in duplicate to 12 x 75 mm plastic Falcon tubes (Becton Dickinson & Co., NJ). Ten μ L of virus solubilization buffer [(0.5% Triton x-100 in 0.8M NaCl, 0.5 mM phenylmethylsulfonylfluoride, 20% (v/v) glycerol, and 50 mL Tris-HCl, pH 7.8)] was then added to each tube, to solubilize the viral particles in the supernatant samples and to release HIV-1 RT located in the viral core. These sample tubes were kept

in an ice bath for 15 min. To these tubes was added a mixture (170 μ L, cocktail I) [52 mM Tris (pH 7.8), 10 mM MgCl₂, 2 mM dithiothreitol, 5 μ g/mL poly(rA)-oligo(dT), 83 μ g/mL dATP, and 3 μ Ci/mL [³H]dTTP], and the mixture was incubated at 37 °C for 2 h. Ten μ L of yeast tRNA (2.5 mg/mL in 10 mM Tris - 0.1 M NaCl -1 mM EDTA) was added to each tube to cause the strands of DNA to clump together. Three mL of cold 10% TCA was added to the mixture to precipitate DNA, which was then collected by filtration (27 mm glass fiber filter in a Millipore sampling manifold). The filter was washed (5% TCA followed by 70% EtCH). Radioactivity of the DNA on the filter was determined by a scintillation counter (Tri-Carb 1900 CA liquid scintillation analyzer, Packard Instrument).

Cytotoxicity Assay. The cytotoxicity in terms of cell growth inhibition of the agents was determined in duplicate in 96-well microplates, by XTT-microculture tetrazolium assay. 32 2',3'-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) was prepared at 1 mg/mL in prewarmed (37 °C) medium without serum. Phenazine methosulfate (PMS) was prepared at 5 mM (1.53 mg/mL) in PBS. Fresh XTT and PMS were mixed together to form an 0.075 mM PMS-XTT solution (25 μ L of the stock PMS was added per 5 mL of 1 mg/mL XTT). Fifty μ L of this mixture was added to each well of the cell culture after 4-day exposure to the agents. After incubation at 37 °C for 6 h, the 96-well plates were mixed, and absorbance at 450 nm and 630 nm was measured with a microplate reader (EL340, Bio-TEK Instruments, Winooski, VT).

Experimental Data Analysis. The dose-effect relationships of at least five different concentrations of each compound (plus drugless control) were analyzed by the median-effect ${\rm plot}^{33,34}$ using computer software³⁵ for automated analysis. The analysis provided anti-HIV-1 EC₅₀s (median-effect concentrations), cytotoxicity ${\rm IC}_{50}$ (median-inhibitory concentrations), and other dose-effect related parameters.

Results and Discussion

All the phosphonates initially showing activity are derivatives of active nucleosides. Due to their nature as the salts of weak acids and weak base, they did not give consistent elemental analytical results.

Table	7.	Anti-HIV	7-1	effect	and	cytotoxi	city	of	5'-H-	and
5'-Me-	-phos	ohonates	of	pyrimid	ine	nucleosio	les ir	MT	4 cell:	5

J Me phosp		nti-HIV ⁵	Anti-cell growth	Selectivity index
Compound ^a		tivity	activity	SI SELECTIVITY INCEX
Compound		C ₅₀ (μM)		IC ₅₀ /EC ₅₀
ddC-HP	Ia	$\frac{250}{3.91}$	<u>IC₅₀ (μΜ)</u> 2,320	590 590
ddT-HP	Ic	>100	>5,000	
ddU-HP	Ie	5.34	>5,000	>920
d4C-HP	IIa	24.2	>5,000	>210
d4T-HP	IIc	11.98	>5,000	>410
F-d4T-HP	IIq	>50	>5,000	7410
laC-HP	IIIa	38.1	1,280	34
laFU-HP	IIIc	>100	>5,000	
laU-HP	IIIe	>100	>5,000	
AZT-HP	IVc	0.072	2,500	34,700
FLT-HP	IVa	0.088	>4,170	>56,810
AZU-HP	IVe	10.65	>5,000	>470
ddC-MeP	Ib	10.03	>5,000	>499
ddT-MeP	Id	>100	>5,000	
ddU-MeP	If	2.7	3,580	1,326
d4C-MeP	IIb	16.1	>5,000	>310
F-d4T-MeP	IIh	>50	>5,000	
laFU-MeP	IIId	>100	>5,000	
laC-MeP	IIIb	>100	3,250	<33
FLT-MeP	IVb	2.62	4,600	1,756
AZT-MeP	IVd	133	>5,000	>37
AZU-MeP	IVf	35	>5,000	>143
F-AZT-MeP	Vd	2,67	>5,000	>1,873
AZT		0.005	154	30,800
FLT		0.069	190	27,530
ddC		0.29	2,280	7,860
ddT		1.88	>5,000	>2,660
<u>ddA</u>		5.04	1,493	300

Phosphonates that showed activity in preliminary screening. HP = 5' - (H-phosphonate), MeP = 5' - (Methylphosphonate)

ddC = 2',3'-dideoxycytidine;

ddT = 3'-deoxythymidine;

ddU = 2',3'-dideoxyuridine;

d4C = 2',3'-dihehydro-2',3'- dideoxycytidine (cytidinene);
d4T = 2',3'-dideoxy-2',3'-didehydrothymidine;
F-d4T = 2'-fluoro-d4T;

 $laC = 1-(2,3-anhydro-\beta-D-lyxofuranosyl)$ cytosine;

 $¹aFU = 1-(2,3-anhydro-\beta-D-lyxofuranosyl)-5-fluorouracil;$

 $laU = 1-(2,3-anhydro-\beta-D-lyxofuranosyl)uracil;$

AZT = 3'-azido-3'-deoxythymidine; F-AZT = $2'-\beta$ -fluoro-AZT; FLT = 3'-fluorothymidine; AZU = 3'-azido-dideoxyuridine;

b 50% effective concentration of inhibiting HIV-1 replication, based on P24-ELISA.4,30 ° 50% inhibitory concentration of MT4 cell growth, based on XTT-microculture tetrazolium assay. 32

Table 8.	Anti-HIV-1 activity of AZT-HP and FLT-HP	
	based on RT assay on day-4 in MT4 cells.	

Compound	Anti-HIV EC _{FO} (<u>µ</u> M) ^e	Anti-cell growth IC ₅₀ (μΜ) ^b	IC ₅₀ /EC ₅₀	
AZT-HP	0.276	2,500	9,058	
FLIT-HP	0.178	>5,000	>28,080	
AZT	0.014	154	11,000	
FIIT	0.008	190	23,750	
ddT	5.52	>5,000	>906	

^{50%} effective concentration of inhibiting HIV based on RT assay. 30,31

Table 9. Dose-effect relationships of inhibiting HIV-1 replication in MT4 cells.

3	Inhibition	מכ	Median-	effect	plot par	ame	ters"
Compound	s(μM) P	24 ELISA	RT assay	P24 E	LISA	RT	assay
AZT	0.1	99.20	97.89	Dm:	0.0087	;	0.014
	0.05	97.39	92.14	m:	2.08	;	1.98
	0.025	91.71	72.21	r:	0.994	;	0.999
	0.0125	74.86	50.50				
	0.00625	37.76	15.02				
	0.00312	7.34	4.64				
FLT	0.08	99.63	99.58	Dm:	0.0074	;	0.0082
	0.04	98.17	97.29	m:	2.33	•	2.22
	0.02	91.13	77.76	r:	0.997	•	0.975
	0.01	56.82	51.20			•	
	0.005	35.24	38.51				
AZT-HP	1.25	99.42	98.37	Dm:	0.072	;	0.276
	0.625	97.90	94.18	m:	1.80	÷	3.17
	0.312	94.58	81.28	r:	0.994	;	0.980
	0.156	73.99	13.96			•	
	0.078	57.13	1.0				
FLT-HP	1.25	99.17	98.13	Dm:	0.135	;	0.177
	0.625	98.06	93.59	m:	2.36	;	2.05
	0.312	88.38	72.94	r:	0.969	:	0.999
	0.156	57.67	42.79	= =	-	•	
	0.078	11.35	16.54				

In (obtained from X-intercept) signifies the potency (the median-effect dose, i.e., EC_{50}); m (slope) signifies the shape of the dose-effect curve (m = 1, >1, and <1, indicate hyperbolic, sigmoidal, and negatively sigmoidal, respectively); r (linear correlation coefficient) determines the conformity of the dose-effect data to the median-effect principle of the mass-action law. All parameters are calculated by using a computer software for IHM-PC. 35

^{50%} inhibitory concentration of MT4 cell growth based on XTTmicroculture tetrazolium assay.³²

Table 10. Dose-effect relationships of inhibiting HIV-1 replication in H9 cells.

		Fractional	Inhibition	Med	lian-effect	plo	ot parameters
Compounds µM							
		P24 ELISA	RT assay	I	24 ELISA		RT assay
AZT	0.312	0.9282	0.9818	Dm:	0.036 μM	;	0.041 μ M
	0.156	0.9116	0.8814	m:	1.51	;	1.96
	0.078	0.8805	0.8404	r:	0.903	;	0.957
	0.039	0.6776	0.6773				
	0.0195	0.1345	0.1032				
AZT-HP	1.25	0.8927	0.8706	Dm:	0.144 μΜ	;	0.113 μΜ
	0.625	0.8782	0.8164	m:	1.22	;	0.90
	0.156	0.660	0.6904	r:	0.935	;	0.937
	0.078	0.4691	0.5245				
	0.039	0.0782	0.1688				
FLT	0.40	0.9167	0.8062	Dm:	0.005 μM	;	0.010 μΜ
	0.20	0.7587	0.6665	m:	1.15	;	1.10
	0.10	0.7345	0.5639	r:	0.973	;	0.980
	0.05	0.5473	0.2737				
	0.025	0.2509	ND				
FLT-HP	0.312	0.9120	0.8922	Dm:	0.016 μΜ	;	0.049 μM
	0.156	0.8562	0.8358	m:	0.79	;	1.31
	0.078	0.7653	0.7417	r:	0.977	;	0.989
	0.0195	0.6382	0.2252			•	
	0.0098	0.340	0.0941				

Their mass spectral data, however, are consonant with the phosphonate structures (Table 6). All the phosphonates showing activity in the initial screening were found to contain from small to significant amounts of their parent nucleosides, as evidenced by HPIC. After rigorous purification (each sample contained less than 0.01% of the parent nucleoside), all compounds except the 5'-H-phosphonates of AZT and FIT showed diminished activity.

We also studied the stability of the 5'-H-phosphonate of FIT (FIT-HP) at 37 $^{\circ}$ C in H₂O, in culture broth containing preheated calf serum but without MT4 cells, and in culture medium with the cells. It was found that both FIT-HP and FIT-MP were both stable in H₂O and in culture broth without the cells for 19 hours. In the culture medium with the cells,

approximately 69% of FLT-HP (retention time 6.8 min for FLT-HP, 13.4 min for FLT: on RP18 ODMP reverse phase column with 20mM KH₂PO₄ - MeCN as the mobile phase) was detected in the supernatant as measured by HPLC whereas negligible amount of FLT-MP (retention time 3.2 min) was present in the supernatant. In the cell pack, FLT-HP was found following homogenization and centrif-ugation. These experiments clearly showed that FLT-HP is significantly stable metabolically, and it also penetrates cell membrane of MT4.

FIIT-HP gave anti-HIV-1 50% inhibition concentration (EC₅₀) of 0.088 μ M, based on p24 core antigen production assay (ELISA), and cytotoxicity 50% inhibition concentration (IC50) of >5,000 µM, based on XIII-microculture tetrazolium assay. The selectivity index (SI) or the IC₅₀/EC₅₀ ratio was >56,810. The same assays for the 5'-H-phosphonate of AZT (AZT-HP) showed EC_{50} of 0.072 μM and IC_{50} of 2500 μM , with an SI of 34,700. The parent nucleosides, FLT and AZT, gave SI values of 27,530 and 30,800, respectively (Table 7). When inhibition of RT is used as an indication of suppressing HIV-1 replication, the EC $_{50}$ and IC $_{50}$ of FLIT-HP were 0.178 μ M and >5,000 μ M, respectively, which yield the SI value of >28,080, whereas the EC₅₀ and IC_{50} of AZT-HP are 0.276 μ M and 2,500 μ M which yield the SI of 9,058 (Table In contrast, the SI values for RT assays are 23,750 for FLT and 11,000 for AZT (Table 8). In addition to these data, nucleoside phosphonates are stable in solution at room temperature for at least for 3 weeks. Therefore, the activity of FLT-HP and FLT-HP are apparently not from the parent nucleosides produced by hydrolysis. possibilitis of different metabolism or prodrug mechanism for these nucleoside phosphonates remain to be proven. Typical dose-effect relationships for AZT, AZT-HP, FLT and FLT-HP with p24-ELISA and RT assays in MT4 cells and H9 cells are given in Tables 9 and 10, respectively.

Acknowledgment. This investigation was supported in part by grants from the National Institute of Allergy and Infectious Diseases and the National Cancer Institute, NIH, U.S.D.H.H.S. (Grants CA18601, CA08748 and AI26056).

References and Footnotes

- 1) Nucleosides. 156.
- Mitsuya, H.; Weinhold, K.; Furman, P. A.; St. Clair, M. H.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. <u>Proc. Nat. Acad. Sci., U.S.A.</u> 1985, 82, 7096.

- Furman, P. A.; Fyfe, J.A.; St.Clair, M.H.; Weinhold, K.; Rideout, J.; Freeman, G. A.; Lehman, S. N.; Bolognesi, D. P.; Broder, S.; Mitsuya, H.; Barry, D. W. Proc. Nat. Acad. Sci., USA 1986, 83, 8333.
- 4) Mitsuya, H.; Broder, S. <u>Proc. Nat. Acad. Sci., U.S.A.</u>, **1986**, <u>83</u>, 1911.
- 5) Mitsuya, H., Broder, S. AIDS Res. Hum. Retroviruses, 1988, 4, 107.
- 6) Balzalini, J.; Kang, G. J.; Dalal, M.; Herdewijn, P.; De Clercq, E.; Broder, S.; Johns, D. S. Mol. Pharmacol., 1987, 32, 162.
- 7) Lin, T-S.; Schinazi, R. F.; Prusoff, W. H. <u>Biochem. Pharmacol.</u>, **1987**, <u>36</u>, 2713.
- 8) Webb, T. R.; Mitsuya, H.; Broder, S. <u>J. Med. Chem.</u>, 1988, <u>31</u>, 1475.
- Lin, T-S.; Shen, Z-Y.; August, E. M.; Brankovan, V.; Yang, H.; Ghazzouli, I.; Prusoff, W. H. <u>J. Med. Chem.</u>, 1989, 32, 1891.
- 10) Camarasa, M-J.; Diaz-Ortiz, A.; Calvo-Mateo, A.; De las Heras, F. G.; Balzarini, J.; De Clercq, E. J. Med. Chem., 1989, 32, 1732.
- 11) Van Aerschot, A.; Herdewijn, P.; Balzarini, J.; Pauwels, R.; De Clercq, E. <u>J. Med. Chem.</u>, 1989, 32, 1743.
- 12) Mitsuya, H.; Jarrett, R. F.; Matsukura, M.; Veronese, F. D. M.; DeVico, A. L., Sarngadharan, M. G., Johns, D. G.; Reitz, M. S.; Broder, S. <u>Proc. Nat. Acad. Sci., U.S.A.</u>, 1987, 84, 2033.
- Perno, C.-F., Yarchoan, R., Cooney, D. A., Hartman, N.R., Webb, D. S., Hao, Z., Mitsuya, H., Johns, D. G., Broder, S. <u>J. Exp. Med.</u>, 1989, 169, 933.
- 14) Chidgeavadze, Z., Beabealashvilli, R., Krayevsky, A., Kukhanova, M. <u>Biochim. Biophys. Acta</u>, 1986, 868, 145.
- 15) Beabealashvilli, R. Sh., Chidgeavadze, Z. G., Kukhanova, M. K., Krayevsky, A. A. <u>Bioessays</u>, 1989, in press.
- 16) Cooney, D. A.; Dalal, M.; Mitsuya, H.; McMahon, J. B.; Nadkarni, M.; Balzarini, J.; Broder, S.; Johns, D. G. <u>Biochem. Pharmacol.</u>, 1986, 35, 2065.
- Starnes, M. C.; Cheng, Y-C. <u>J. Biol. Chem.</u>, 1987, 262, 988.
- 18) Cheng, Y-C.; Dutschman, G. E.; Bastow, K. F.; Sarngadharan, M. G.; Ting, R. Y. C. <u>J. Biol. Chem.</u>, 1987, 262, 2187.
- 19) Hao, Z.; Cooney, D. A.; Hartman, N. R.; Perno, C. F.; Fridland, A.; DeVico, A. L.; Sarngadharan, M. G.; Broder, S.; Johns, D. G. Mol. <u>Pharmacol.</u>, 1988, 34, 431.
- 20) Matthes, E.; Lehmann, C.; Scholz, D.; Rosenthal, H. A.; Langen, P. <u>Biochem. Biochys. Res. Commun.</u>, 1988, 153, 825.

- Cretton, E. M.; Xie, M-Y.; Bevan, R. J.; Goudgaon, N. M.; Schinazi,
 R. F.; Sommandossi, J-P. <u>Mol. Pharmacol.</u>, 1991, 39, 258.
- 22) Sommandossi, J-P.; Carlisle, R.; Zhou, Z. <u>Mol. Pharmacol.</u>, 1989, 36, 9.
- 23) Cohen, S. S; Plunkett, W. Ann. NY Acad. Sci., 1975, 255, 269.
- 24) De Clercq, E., Holý, A., Rosenberg, I., Sakuma, T., Balzarini, J., Maudgal, P. C. <u>Nature</u>, **1986**, <u>323</u>, 464.
- Puech, F., Gosselin, G., Balzarini, J. De Clercq, E., Imbach, J.-L. J. Med. Chem., 1988, 31, 1897.
- 26) Khorlin, A. A., Tarussova, N. B., Dyatkina, N. B., Krayevsky, A. A., Beabealashvilli, R. Sh., Galevov, G. A., Zhdanov, V. M., Korneyeva, M. N., Nossik, D. N., Mayerova, C. N. <u>USSR Patent, Invention PST/SU</u> 88/00271, Priority from 29.12.1987.
- 27) Tarussova, N. B., Khorlin, A. A., Krayevsky, A. A., Korneyeva, M. N., Nossik, D. B., Kruglov, N. B., Galegov, G. A., Beabealashvilli, R. Sh. <u>Mol. Biol.</u> (Moscow), 1989, 23, in press.
- 28) Chen, J. T., Benkovic, S. J. <u>Nucleic Acid Res.</u>, 1983, <u>11</u>, 3737.
- 29) Sakatsume, O.; Yamane, H.; Takaku, H.; Yamamoto, N. <u>Tetrahedron Lett.</u>, 1989, 30, 6375.
- 30) Hartshorn, K. L., Vogt, M. W., Chou, T-C., Blumberg, R. S., Byington, R., Schooley, R. T., Hirsch, M. S. <u>Antimicrob</u>. <u>Agents Chemother</u>., 1987, 31, 168.
- 31) Spira, T. J.; Bozeman, L. H.; Holman, R. C.; Warfield, D. T.; Phillips, S. K.; Feorino, P. M. <u>J. Clin. Microbiol.</u>, **1987**, <u>25</u>, 97.
- 32) Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D., Boyd, M. R. <u>Cancer Res.</u>, 1988, 48, 4827.
- 33) Chou, T-C., Talalay, P. Adv, Enz. Regul., 1984, 22, 27.
- 34) Chou, T-C., Talalay, P. In <u>New Avenues in Developmental Cancer Chemotherapy Bristol-Myers Symposium Series</u>, Harrap, K. R., Connors, T. A., Eds., Academic Press, New York, 1987, pp. 37-64.
- 35) Chou, J., Chou, T-C. Dose-effect Analysis with Microcomputers: Quantitation of ED_{50} , ID_{50} , Synergism, Antagonism, Low-dose Risk, Receptor Ligand Binding and Enzyme Kinetics. IBM-PC Series, Elsevier-Biosoft, Cambridge, UK, 1987.